Build Deep Learning Framework:Step12 Improvement of Variable Length Parameter

Post at — Mar 12, 2025
#Deep_Learning_Framework

How to Build Deep Learning Framework Step By Step Using 60 steps:Step12

We have two main improvements: making the function easier to use and making the function easier to implement.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
import numpy as np


class Variable:
    def __init__(self, data):
        if data is not None:
            if not isinstance(data, np.ndarray):
                raise TypeError('{} is not supported'.format(type(data)))

        self.data = data
        self.grad = None
        self.creator = None

    def set_creator(self, func):
        self.creator = func

    def backward(self):
        if self.grad is None:
            self.grad = np.ones_like(self.data)

        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            x, y = f.input, f.output
            x.grad = f.backward(y.grad)

            if x.creator is not None:
                funcs.append(x.creator)


def as_array(x):
    if np.isscalar(x):
        return np.array(x)
    return x


class Function:
    def __call__(self, *inputs):
        xs = [x.data for x in inputs]
        ys = self.forward(*xs)
        if not isinstance(ys, tuple):
            ys = (ys,)
        outputs = [Variable(as_array(y)) for y in ys]

        for output in outputs:
            output.set_creator(self)
        self.inputs = inputs
        self.outputs = outputs
        return outputs if len(outputs) > 1 else outputs[0]

    def forward(self, xs):
        raise NotImplementedError()

    def backward(self, gys):
        raise NotImplementedError()


class Add(Function):
    def forward(self, x0, x1):
        y = x0 + x1
        return y


def add(x0, x1):
    return Add()(x0, x1)


x0 = Variable(np.array(2))
x1 = Variable(np.array(3))
y = add(x0, x1)
print(y.data)

The outputs:

1
2
(deep-learning-from-scratch-3) D:\project\deep-learning-from-scratch-3>python steps\step12.py
5