Build Deep Learning Framework:Step9 Make functions easier to use

Post at — Feb 26, 2025
#Deep_Learning_Framework

How to Build Deep Learning Framework Step By Step Using 60 steps:Step9

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
import numpy as np


class Variable:
    def __init__(self, data):
        if data is not None:
            if not isinstance(data, np.ndarray):
                raise TypeError('{} is not supported'.format(type(data)))

        self.data = data
        self.grad = None
        self.creator = None

    def set_creator(self, func):
        self.creator = func

    def backward(self):
        if self.grad is None:
            self.grad = np.ones_like(self.data)

        funcs = [self.creator]
        while funcs:
            f = funcs.pop()
            x, y = f.input, f.output
            x.grad = f.backward(y.grad)

            if x.creator is not None:
                funcs.append(x.creator)


def as_array(x):
    if np.isscalar(x):
        return np.array(x)
    return x


class Function:
    def __call__(self, input):
        x = input.data
        y = self.forward(x)
        output = Variable(as_array(y))
        output.set_creator(self)
        self.input = input
        self.output = output
        return output

    def forward(self, x):
        raise NotImplementedError()

    def backward(self, gy):
        raise NotImplementedError()


class Square(Function):
    def forward(self, x):
        y = x ** 2
        return y

    def backward(self, gy):
        x = self.input.data
        gx = 2 * x * gy
        return gx


class Exp(Function):
    def forward(self, x):
        y = np.exp(x)
        return y

    def backward(self, gy):
        x = self.input.data
        gx = np.exp(x) * gy
        return gx


def square(x):
    return Square()(x)


def exp(x):
    return Exp()(x)


x = Variable(np.array(0.5))
y = square(exp(square(x)))
y.backward()
print(x.grad)


x = Variable(np.array(1.0))  # OK
x = Variable(None)  # OK
x = Variable(1.0)  # NG
1
2
3
4
5
6
7
8
9
(deep-learning-from-scratch-3) D:\project\deep-learning-from-scratch-3>python steps\step09.py
3.297442541400256
Traceback (most recent call last):
  File "D:\project\deep-learning-from-scratch-3\steps\step09.py", line 92, in <module>
    x = Variable(1.0)  # NG
        ^^^^^^^^^^^^^
  File "D:\project\deep-learning-from-scratch-3\steps\step09.py", line 8, in __init__
    raise TypeError('{} is not supported'.format(type(data)))
TypeError: <class 'float'> is not supported